# Massive Online Open Courses (MOOCs) A curated list of free/open access Massive Online Open Courses. ## Contributing .. ## Table of Contents - [Online Platforms for Learning](#online-platforms-for-learning) - [Courses by Topic](#courses-by-topic) ## Online platforms for learning * [AI Campus](https://ki-campus.org/). * [AI on Demand](https://www.ai4europe.eu/). * [BIDAcademy. Academia Banco Interamericano de Desarrollo](https://cursos.iadb.org/en). * [DAIR:AI. Democratizing Artificial Intelligence Research, Education and Technologies](https://github.com/dair-ai). * [FAO elearning ACADEMY](https://elearning.fao.org/) ## Digital skills * [Codeacademy](https://www.codecademy.com/). * [Coursera](https://www.coursera.org/). * [Digital Skills & Jobs Platform](https://digital-skills-jobs.europa.eu/en). * [EDX](https://www.edx.org/). * [Freecodecamp](https://www.freecodecamp.org/). * [Datacamp](https://www.datacamp.com/). * [Future Learn](https://www.futurelearn.com/). * [NVIDIA Deep Learning Institute](https://learn.nvidia.com/en-us/training/self-paced-courses). * [The Forage](https://www.theforage.com/). * [The Linux foundation](https://trainingportal.linuxfoundation.org). * [Udacity](https://www.udacity.com/). * [Cognitive Class AI](https://cognitiveclass.ai/). * [CertiProf free certifications][https://certiprof.com/pages/free-new-entry-level-certification] * [SimpliLearn](https://www.simplilearn.com/). ## Open access courses offered by universities * [MIT OpenCourseWare](https://ocw.mit.edu/). * [MIT Open Learning](https://openlearning.mit.edu/). * [Standford Online, free online courses](https://online.stanford.edu/free-courses). * [Open Source Society University](https://github.com/ossu). * [UPV EDX](https://upvx.es/). ## Earth Sciences * [ECMWF Learning Platform](https://learning.ecmwf.int/). * [Earth Lab. Learn to use earth science and other data in R and Python] * [IBM SkillsBuild](https://www.earthdatascience.org/). ## Big Tech Companies * [IBM Training](https://www.ibm.com/training/). * (https://skills.yourlearning.ibm.com). * [CISCO Network Academy](https://www.netacad.com/). * [Grow with Google](https://grow.google/) * [Microsoft. Learn Microsoft](https://learn.microsoft.com/en-us/). * [Oracle Education](https://education.oracle.com/es/). * [Oracle Academy](https://learn.oracle.com/). ## Courses by Topic ### Artificial Intelligence * [Elements of AI](https://www.elementsofai.com/). ### Computer Vision * [Computer vision image understanding](https://digital-skills-jobs.europa.eu/en/opportunities/training/computer-vision-image-understanding-efficient-business-and-industry) . ### Data Science * [Curso de Data Science](https://www.santanderopenacademy.com/es/courses/introduction-to-data-science.html). * [Data Science for Ecologist and Environmental Scientist](https://ourcodingclub.github.io/). * [Data Science Fundamentals](https://cognitiveclass.ai/learn/data-science). * [Data Science Foundations](https://www.codecademy.com/learn/paths/data-science-foundations). ### Deep Learning * [Networks for Learning: Regression and Classification](https://ocw.mit.edu/courses/9-520-a-networks-for-learning-regression-and-classification-spring-2001/) . * [HSG 10,860,1.00 - Introduction to Applied Deep Learning](https://github.com/pA1nD/course-deep-learning). * [A Guide to Production Level Deep Learning](https://github.com/alirezadir/Production-Level-Deep-Learning). ### Goegraphical Information Systems (GIS) * [Sistemas de Información Geográfica. Víctor Olaya](https://volaya.github.io/libro-sig/index.html). ### Machine Learning * [Foundations of Machine Learning](https://bloomberg.github.io/foml/#home). * [Google Machine Learning](https://developers.google.com/machine-learning). * [Introduction to Machine Learning](https://developers.google.com/machine-learning/intro-to-ml). * [Machine Learning Crash Course](https://developers.google.com/machine-learning/crash-course). * [Machine Learning Technical Interviews](https://github.com/alirezadir/Machine-Learning-Interviews/blob/main/README.md) . * [ML for Beginners](https://github.com/microsoft/ML-For-Beginners). ### Maths * [Cómo aprender matemáticas – Para Estudiantes](https://online.stanford.edu/courses/gse-yeduc115-sp-como-aprender-matematicas-para-estudiantes) . * [Linear Algebra Gilber Strang](https://ocw.mit.edu/courses/18-06sc-linear-algebra-fall-2011/pages/ax-b-and-the-four-subspaces/) . * [Matrix Methods In Data Analysis, Signal Processing, And Machine Learning](https://ocw.mit.edu/courses/18-065-matrix-methods-in-data-analysis-signal-processing-and-machine-learning-spring-2018/) . * [Single Variable Calculus](https://ocw.mit.edu/courses/18-01-single-variable-calculus-fall-2006/). * ### Statistics and Probability * [Introduction to Probability and Statistics - Spring 2022](https://ocw.mit.edu/courses/18-05-introduction-to-probability-and-statistics-spring-2022/) . * [Introduction to Probability and Statistics](https://openlearninglibrary.mit.edu/courses/course-v1:MITx+18.05r_10+2022_Summer/course/) . * [Técnicas Estadísticas para el Análisis Científico de Datos](https://www2.uned.es/experto-estadistica-multivariante/). * [MITx: Probability - The Science of Uncertainty and Data](https://www.edx.org/learn/probability/massachusetts-institute-of-technology-probability-the-science-of-uncertainty-and-data) . * [Statistics and Probability contents. Tech yourself statistics](https://stattrek.com/). [HARVARD UNIVERSITY - Data Science Courses](https://pll.harvard.edu/catalog?topics%5B714%5D=714&price%5B1%5D=1&max_price=&keywords=&page=1) ### Scrum methodology * [Scrum Foundations](https://www.agile-academy.com/en/agile-insights/scrum-foundations-online-course/). * [Scrum Guides](https://scrumguides.org/). * ### Remote Sensing * [Remote sensing](https://es.coursera.org/learn/remote-sensing). * [Tutorial Open Nighttime Lights](https://worldbank.github.io/OpenNightLights/welcome.html). ### CUDA programming / GRPU programming/ Paralell Programming * [Fundamentals of Accelerated Computing with CUDA Python](https://courses.nvidia.com/courses/course-v1:DLI+C-AC-02+V1/) . * [Fundamentals of Accelerated Computing with CUDA C/CMITx: Probability - The Science of Uncertainty and Data ++](https://courses.nvidia.com/courses/course-v1:DLI+C-AC-01+V1/) . * [CUDA Tutorial](https://cuda-tutorial.readthedocs.io/en/latest/). * [NVIDIA CUDA](https://github.com/federico-busato/Modern-CPP-Programming). * [NVIDIA DLI Online Training Catalogue](https://digital-skills-jobs.europa.eu/en/opportunities/training/nvidia-dli-online-training-catalogue) . * [Fundamentals of Heterogeneous Parallel Programming with CUDA C/C++](https://education.molssi.org/gpu_programming_beginner/) . | https://github.com/MolSSI-Education/gpu_programming_beginner ### Robotics * [Modern Robotics](https://github.com/madibabaiasl/modern-robotics-course). * [Robotics courses](https://github.com/mithi/robotics-coursework). * [Robotics courses online platform. Cursos de robótica](https://www.theconstructsim.com/). * [ROS Industrial, Industrial Training](https://industrial-training-dev.readthedocs.io/). ### Teledetection, satellital images * [Applied NASA Training](https://appliedsciences.nasa.gov/get-involved/training/). The ROS-Industrial training page! ## Plants *[Cultivo sin suelo - Tercera edición](https://www.plataformatierra.es/formacion/cultivo-sin-suelo-tercera-edicion) ## Licenses License [![CC0](http://i.creativecommons.org/p/zero/1.0/88x31.png)](http://creativecommons.org/publicdomain/zero/1.0/)